Argonne Pational Laboratory

C:REGUSE,

A Linear and Quadratic Regression

User Program

by

Conrad E. Thalmayer

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Atomic Energy Commission, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University
Case Western Reserve University
The University of Chicago
University of Gincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
Iowa State University
The University of Iowa

Kansas State University
The University of Kansas
Loyola University
Marquette University
Michigan State University
The University of Michigan
University of Minesota
University of Missouri
Northwestern University
University of Notre Dame

The Ohio State University
Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
University of Texas
Washington University
Wayne State University
The University of Wisconsin

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in the United States of America
Available from
Clearinghouse for Federal Scientific and Technical Information
National Bureau of Standards, U. S. Department of Commerce
Springfield, Virginia 22151
Price: Printed Copy \$3.00; Microfiche \$0.65

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439

C:REGUSE,
A Linear and Quadratic Regression
User Program

by

Conrad E. Thalmayer

Chemistry Division

February 1970

PREFACE

C:REGUSE is written in XDS SYMBOL to run as a "Background" program under ARGOS (Argonne Operating System), using the C:READ, C:WRITE, and C:REGN routines. The limitation upon the number of data points is due only to the size of the Background core area; when more Background area is available, the program can be readily changed to treat more data.

This report presents all the information needed for the use and understanding of C:REGUSE; the derivation of the regression equations, details of use of the called routines, and their organization are given in various ANL Reports.¹⁻³ Section I of this report explains the purpose of this program and the significance of its results. Section II contains the instructions for its use. Section III, together with the flow charts and listing, indicates the structure of the program and will facilitate any modification by the user.

C:REGUSE was written in December 1968.

TABLE OF CONTENTS

	Page
ABSTRACT	5
I. LEAST SQUARES, GENERAL	
II. USE OF THE PROGRAM	6
III. ORGANIZATION	7
APPENDIX A. Flow Charts	12
APPENDIX B. Listing	. 14
ACKNOWLEDGMENTS	. 19
REFERENCES	. 19

LIST OF FIGURES

No	. Title	Page
1.	Sample Input with Three Sets of Data	8
2.	Output for the Data of Fig. 1	9
3	Data of Fig. 1 and Curves Calculated from the Parameters of Fig. 2	11

.

C:REGUSE,
A Linear and Quadratic Regression
User Program

bv

Conrad E. Thalmayer

ABSTRACT

This report describes a user program for the Xerox Data Systems Sigma 5 or Sigma 7 computer operating under ARGOS (Argonne Operating System). C:REGUSE performs a linear or quadratic weighted least-squares analysis upon not more than 500 data points, yielding the coefficients of the fitted equation, their internal errors, the external errors, and the chi-square value; it uses card input and line-printer output. The report explains the significance of the program, describes its use, and outlines its structure. The flow charts and listing are included.

I. LEAST SOUARES, GENERAL*

Probably the most common statistical problem in science is presented by a series of measurements of two associated variables (x,y). It is assumed that the observed (x,y) association results from an underlying relationship and that this relationship can be expressed in the form of a curve. Observed deviations from this curve are then considered as statistical fluctuations, possibly resulting from experimental errors in measurement or from inherent fluctuations. The problem is to estimate a "true" curve which gives the best possible fit to the data, despite the statistical fluctuations.

The method of least squares is particularly suitable for this task, for (a) it is objective; (b) it provides definite weights; (c) it permits a test for checking the suitability of the functional form chosen; (d) it yields the errors in the curve estimates based on the stated errors in the measurements (internal errors) and also the errors resulting from the imperfect fit of the data to the curve (external errors); (e) it is applicable to cases with more than two variables. Most importantly, (f) least squares gives high-quality estimates, i.e., the results lie closer to the "true" values, on the average, than do the results of graphical fitting or most other methods of calculation.

^{*}This treatment is adapted from the work of Jaffey.4

There is no automatic way to select the appropriate analytic form for the curve to be fitted. Experience in the science, graphical analysis, and theoretical guidance seem to be the best sources for suggesting a suitable type of curve. Simplicity is a necessary criterion, for n measurements may always be exactly fitted with an n-parameter function. The number of parameters is chosen to be the minimum required to reduce deviations of the measurements from the curve to an acceptable minimum. Wise choice of functional form is essential, e.g., data adequately fitted with a two-parameter exponential curve may require many more parameters if a polynomial is fitted. The method of least squares evaluates parameters after the curve type has been selected on nonstatistical grounds.

The user of this program assumes that his data, within the limits of his stated standard deviations, will be adequately fitted by the chosen functional form. If the given standard deviations are accurate absolute values, incorporating the errors from all sources, he may test his assumption by the " χ^2 Test." The χ^2 value calculated by this program is compared with the value given in a χ^2 table at a chosen rejection level, say 5%, and (N-M) degrees of freedom, where N is the number of observations and M is the number of parameters in the fitted equation. If the calculated value exceeds the tabulated value, then the chosen functional form is not consistent with the given observations and standard deviations, and should be rejected. (If accurate absolute standard deviations are not available, but replicate y-observations have been made at a representative number of x-values, consistency may be tested by the "F Test," independently of this routine.)

II. USE OF THE PROGRAM

C:REGUSE performs a regression analysis upon not more than 500 sets of values of $x_i,\,y_i,$ and $\sigma_i,\,$ yielding a weighted least-squares fit to either the linear equation y=a+bx or the quadratic equation $y=a+bx+cx^2,$ or both in turn. The x_i are assumed to be without error. The error of each y_i is expressed as its standard deviation $\sigma_i.$ Each y_i is weighted by $w_i=1/\sigma_i^2;$ thus a full array of nonzero σ_i values is required, though their significance may be only relative to each other.

In addition to the equation parameters a and b (and c for the quadratic case), C:REGUSE calculates $\sigma^2(a)$, $\sigma^2(b)$, $s^2(a)$, $s^2(b)$, $s^2(y)$, and χ^2 (and $\sigma^2(c)$ and $s^2(c)$ for the quadratic case). The σ^2 are the internal errors (variances) of the parameters, calculated purely by propagation of the given standard deviations σ_i . (If the standard deviations are only relative, the internal errors are meaningless.) The s^2 are the external errors (estimated variances), which indicate the closeness of fit of the x_i , y_i to the calculated curve. The quantity χ^2 is a measure of the agreement between the external and internal errors; it can be used with a χ^2 table to

The state of the s

judge whether the chosen equation form is consistent with the data. The significance of these quantities is explained more fully in Sect. I.

Input format:

- (1) A card bearing L, Q, or B in the first column, to indicate linear or quadratic regression, or both. The remaining 79 columns may contain the user's title.
- (2) Not more than 500 cards, each containing a set of values of x_i , y_i , and σ_i in free format (separated by spaces).

The above may be repeated any number of times.

(3) A card bearing # in the first column, to indicate the end.

Figure 1 shows the input for a sample run with three sets of data, utilizing the three options. A variety of acceptable number formats is also illustrated. Figure 2 is the output from this run. Figure 3 is a plot of the data with their standard deviations and the fitted curves. (The linear and quadratic curves for Example 3 are so close together that they cannot be distinguished on this scale.)

For Example 1, the calculated χ^2 value of 2.7 is less than the value 6.0 given in a χ^2 table for a 5% rejection level and (N-M) = 2. According to this criterion, therefore, a linear equation is suitable for the data of Example 1. For Example 2, the calculated χ^2 value of 11.4 is greater than 7.8, the tabulated χ^2 value for a 5% rejection level and (N-M) = 3. A quadratic equation is therefore not consistent with this data at a 95% confidence level. For Example 3, the calculated χ^2 value of 5.3 for a linear fit is less than 9.5, the tabulated χ^2 value for 5% rejection and (N-M) = 4. The χ^2 value calculated for a quadratic fit also meets the χ^2 test (5.3 versus 7.8 for 5% and (N-M) = 3). However, the criterion of simplicity now dictates that a linear equation is more appropriate for these data.

Note added in proof: C:REGUSE has been extended to accept 512 data points and to yield a table of x_i , $y_i(given)$, $y_i(calc)$, σ_i , residual; $y_i(given)$ - $y_i(calc)$, and residual; $y_i(calc)$.

III. ORGANIZATION

As can be seen from the first flow chart and the listing, the program flow depends first on the content of column 1 of each data card. If the C:READ routine interprets the content of column 1 as a valid number character (digit, blank, +, -, ., E, or D), the point count is incremented by 1, the values of x_i , y_i , and σ_i are read by means of C:READ and stored as long floating-point numbers, and the next card is fetched. If the point count is greater than 500 or the fields read for x_i , y_i , and σ_i do not contain valid numbers, the program stops.

1	2	3	4	5	6	7	8
1 2 3 4 5 6 7 8 9 0 1	2 3 4 5 6 7 8 9 0 1 2 3 4	5 6 7 8 9 0 1 2 3 4 5	6 7 8 9 0 1 2 3 4 5 6	7 8 9 0 1 2 3 4 5	6 7 8 9 0 1	2 3 4 5 6 7 8 9 0 1 2 3	3 4 5 6 7 8 9 0
L, J,O,H,N, Q,., P,U,	B L ₁ I ₁ C ₁ 1 1 1 1 1 1	I I I RIEIGIRIEISI	S I O N A N A L Y S	IIIS IIIIII		IEIXIAIMIPILIEI INIUN	MB E R IOINE
		1 1 1 1 1 1 9 1 1 1 1 1	11111111				
	1111131111	1 1 1 1 1 2 1 1 1 1	111111111111				
	1111151111	1 1 1 1 1 1 6 1 1 1 1 1	111111111111111111111111111111111111111				
	111111911111	1,1,1,1,9,1,1,1	11111111111				
Q, J,O,H,N, Q,., P,U	B L,I,C,	R _I E _I G _I R _I E _I S _I	S I ON ANALYS	IIS		EIXIAIMIPILIE INIUN	AB E R T WC
	111111111111111111111111111111111111111	1111151111	11111211				
	3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1111141111	1111112111				шш
	5,,,,,	1111151111	111112111				
	7,,,,,,	6,,,,	1111112111				
	9,,,,,	1111191111	1111.13111				
	1,1,1,1,3,1,1,1	1,1,1,1,5,,,,,	111114111				
B, J,O,H,N, ,Q,,, ,P,U	B L,I,C,	I RIEIGIRIEI SISI	I O N A NA NA LY SI	,S, ,,,,,,,	1 1 1 1 E	X, A,M, P, L, E, ,N, U,M,B E	R THREI
	1,.10,010, 1, 1, 1, 1, 1	1,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.151111111				
	31.10,0,0,0,	1,.,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,5,,,,,,,,,				
	5,0,E,-,1,,,,,,,	3 ₁ 0 ₁ E ₁ - ₁ 1 ₁ 1 1 1 1 1	.,5,,,,,,,,				шш
	7 ₁ 0 ₁ . ₁ E ₁ - ₁ 1 ₁ 1 1 1	. 3 E 1	. ,5, , , , , , , ,				
	, . ₁ 9 ₁ D ₁ 1, , , , , , , , ,	5 ₁ 0 ₁ 0 ₁ D ₁ - ₁ 2 ₁ 1 1 1	5				
	. 1,3,E,+,2, , , , ,	. 1016 E 12 1 1 1	. [5]]]]]]]				
#, , , , , , , , , ,			سيسبب			224567200022	3 4 5 6 7 8 9 0
1 2 3 4 5 6 7 8 9 0 1	2 3 4 5 6 7 8 9 0 1 2 3 4	3 1 5 6 7 8 9 0 1 2 3 4 5	6 7 8 9 0 1 2 3 4 5 6	7 8 9 0 1 2 3 4	6 7 8 9 0 1	2 3 4 5 6 7 8 9 0 1 2	3 4 3 6 / 8 9 (

AMD-8 (9-60)

Fig. 1. Sample Input with Three Sets of Data

10:55:04

LINEAR REGRESSION
Y=A+BX

PARAMETERS

B . 1.25714285714285889E00

A = 8.34285714285714474E00

INTERNAL ERRORS

SIGSQA = 8.2857142857142862E=01 SIGSQB = 2.8571428571428576E=02

CHIS3 - 2.68571428571428927E00

EXTERNAL ERRORS

SSQA = 1.11265306122449203E00 SSQB = 3.8367346938775537E=02 SSQY = 1.34285714285714541E00

JOHN Q. PUBLIC

REGRESSIAN ANALYSIS

EXAMPLE NUMBER THE

14:00:41

02-23-70

03-31-70

QUADRATIC REGRESSION
Y=A+3x+Cx++2

PARAMETERS

A = 5.31650853889943109E00 B = -6.354417035631459E-01 C = 1.0826481130086453E-01 INTERNAL ERRORS

SIGSQA = 6.1919829222011431E-02 SIGSQ3 = 8.4140839131351659E-03 SIGSQC = 5.2445709466582435E-05 EXTERNAL ERRORS

SSQA = 2.3490283093711294E=01 SSQB = 3.1920180591119282E=02 SSQC = 1.9896123388896762E=04 SSQY = 3.79366083350903493E00

CHISQ . 1.13809825005271192E01

Fig. 2. Output for the Data of Fig. 1

LINEAR REGRESSION Y#A+BX

PARAMETERS

A = 2.7142857142857101E-01

B # 4.5714285714285729E-01

INTERNAL ERRORS

SIGSQA . 1.4910714285714301E-01 SIGSQB = 2.6785714285714297E=03

CHISQ . 5.31428571428571472E00

QUADRATIC REGRESSION Y=A+3X+CX++2

PARAMETERS

A = 1.7321428571428205E=01 B . 4.9880952380952452E-01 C = -2.976190476190481E-03 INTERNAL ERRORS

SIGSQA . 3.5167410714285756E-01 SIGS03 . 3.9136904761904749E-02 SIGSQC . 1.8601190476190470E-04

CHISQ . 5.2666666666666682E00

Fig. 2 (Contd.)

EXTERNAL ERRORS

SSQA . 1.9809948979591847E-01 SSQB . 3.5586734693877553E-03 SSQY - 1.32857142857142984E00

EXTERNAL ERRORS

SSQA = 6.1738343253968295E-01 SS3B . 6.8707010582010632E-02 SSQC . 3.2655423280423296E-04 SSQY . 1.7555555555555664E00

Fig. 3. Data of Fig. 1 and Curves Calculated from the Parameters of Fig. 2

If the content of column 1 is not a valid number character, it is stored in location TYPEBUFF. If a prior batch of data has not been treated (as shown by REGNTYPE still containing its initial value of zero), the program goes to the address TYPESETR. If a prior batch of data has been treated, the program goes to REGNHEAD.

At TYPESETR, the content of TYPEBUFF is loaded into location REGNTYPE. If this content is '#', the program exits normally. Otherwise, the user's title is loaded into an output buffer, the time and date are fetched and loaded into the same buffer, and that line is printed; the point count is now set to zero and the next card is fetched.

At REGNHEAD, as can be seen from the second flow chart, the appropriate heads are printed, de-

pending on whether REGNTYPE contains 'Q'. The appropriate regression analysis is then performed by the C:REGN routine, as determined by the same criterion. The results of the analysis are then converted to EBCDIC decimal by the C:WRITE routine, loaded into their respective output buffers, and printed. Finally, if REGNTYPE contains 'B', this is replaced by 'Q' and the program returns to address REGNHEAD; otherwise, it goes to TYPESETR to treat the next batch of data or exit.

APPENDIX A

Flow Charts

APPENDIX B

Listing

C:REGUSE

REGRESSION USE PROGRAM

C.E.T.

02/02/70

THIS PROGRAM PERFORMS A REGRESSION ANALYSIS UPON NOT MORE THAN 500 DATA POINTS, USING THE C:READ, C:REGN AND C:WRITE ROJTINES. IT YIELDS A WEIGHTED LEAST SQUARES FIT TO EITHER THE LINEAR EQUATION Y=A+BX, OR THE QUADRATIC EQUATION Y=A+BX+CX**2, OR BOTH. THE PROGRAM USES CARD INPUT AND LINE-PRINTER OUTPUT.

INPUT:

- (1) A CARD BEARING L, Q OR B IN THE FIRST COLUMN, TO INDICATE LINEAR OR QUADRATIC REGRESSION OR BOTH. THE REMAINING 79 COLUMNS MAY CONTAIN THE USER'S FITLE.
- (2) NOT MORE THAN 50° CARDS, EACH CONTAINING A SET OF VALUES OF X, Y AND D.

THE ABOVE MAY BE REPEATED ANY NUMBER UF TIMES.

(3) A CARD BEARING # IN THE FIRST COLUMN, TO INDICATE THE END.

QUIPUT:

A, THE Y-AXIS INTERCEPT

B, THE COEFFICIENT OF X

C, THE COEFFICIENT OF X**2

SIGMA SQUARED A, THE INTERNAL ERROR (VARIANCE) OF A

SIGMA SQUARED B, THE INTERNAL ERROR (VARIANCE) OF B

SIGMA SQUARED C, THE INTERNAL ERROR (VARIANCE) OF C

S SQUARED A, THE EXTERNAL ERROR OF A

S SQUARED B, THE EXTERNAL ERROR OF B

S SQUARED C, THE EXTERNAL ERROR OF C

S SQUARED Y, THE EXTERNAL ERROR OF C

CHI SQUARED

CHI SQUARED

NOTES:

- (1) X IS THE VARIABLE WITHOUT ERROR, Y IS THE VARIABLE WITH ERROR, AND D IS THE STANDARD DEVIATION OF Y.
- (2) EACH Y VALUE IS WEIGHTED BY THE RECIPROCAL OF THE SQUARE OF ITS D VALUE; THUS A FULL ARRAY OF POSITIVE D VALUES IS REQUIRED; THE D VALUES MAY BE ONLY RELATIVE TO EACH OTHER.
- (3) THE INTERNAL ERRORS ARE CALCULATED PURELY BY PROPAGATION OF THE GIVEN STANDARD DEVIATIONS; IF THE STANDARD DEVIATIONS ARE ONLY RELATIVE, THE INTERNAL ERRORS ARE MEANINGLESS.
- (4) THE EXTERNAL ERRORS REFLECT THE CLOSENESS OF FIT OF THE DATA.
 (5) CHI SQUARED INDICATES THE AGREEMENT BETWEEN THE EXTERNAL AND
- (5) CHI SQUARED INDICATES THE AGREEMENT BETWEEN THE EXTERNAL AND INTERNAL ERRORS FOR (N-M) DEGREES OF FREEDOM, WHERE N IS THE NUMBER OF DATA POINTS AND M IS THE NUMBER OF PARAMETERS FITTED.

THE RESERVE OF THE PROPERTY OF

```
REF DECLREAD, INTGREAD, LINAREGN, QUADREGN, LFEWRITE
REGNTYPE RES
                    1
READTABL GEN, 4, 4, 4, 20, 32 C, 0, 2, BA(READBUFF), 80
READBUFF RES
                    20
TYPEBUFF RES
                    8
          BOUND
                    1000
INDARRAY RES
                    1000
DEPARRAY RES
                    1000
DEVARRAY RES
                    8
          BOUND
REGNTABL RES
                    22
CNTERROR GEN, 16, 16 24,7
                  . ABORTED: TOO MANY DATA!
          TEXT
FMTERROR GEN. 16,16 23,0
                   .
                      ABORTED: INVALID CARD'
          TFXT
REGUSEND GEN, 16, 16 14,0
                   ' END C:REGUSE'
           TEXT
                   • 1
I INHEAD1 TEXT
                         LINEAR REGRESSION
                  .
           TEXT
LNHD1TBL GEN, 4, 4, 4, 20, 32 0, 4, 2, BA(LINHEAD1), 75
 LINHEAD2 TEXT
                                Y=A+BX
 LNHD2TBL GEN, 4, 4, 4, 20, 32 C, 4, 2, BA(LINHEAD2), 68
                    . 1
 USERTITL TEXT
           TEXT
           TF XT
 TITLTABL GEN, 4, 4, 4, 20, 32 0, 4, 2, BA(USERTITL), 132
                                             PARAMETERS
                    • C
 HEADTHRE TEXT
                                                                       FXTERNA"
                           INTERNAL ERRORS
           TE XT
                    'L ERRORS'
           TEXT
* HEAD3TBL GEN, 4, 4, 4, 20, 32 7, 4, 2, BA (HEADTHRE), 112
                                                                           SIG.
                                   A =
 PARALINE TEXT
                    * A
                                                               SSQA =
                     SQA =
           TEXT
                     .
           TFXT
                             1,4,2,BA(PARALINE),120
 PARATABL GEN, 4, 4, 4, 20, 32
                                                                           SIG
                                    B =
 PARBLINE TEXT
                                                               SSQB =
                     ·SQB =
           TEXT
           TFXT
                              0,4,2,BA(PARBLINE),120
 PARBTABL GEN, 4, 4, 4, 20, 32
                                                                           SIG
                                    C =
 PARCLINE TEXT
                                                               SSQC =
           TEXT
                     *SQC =
           TEXT
                            0,4,2,BA(PARCLINE),120
 PARCTABL GEN, 4, 4, 4, 20, 32
                                                                             CH'
 CHISLINE TEXT
                     * A
                    *ISQ =
           TEXT
 CHISTABL GEN, 4, 4, 4, 20, 32 0, 4, 2, BA(CHISLINE), 80
 SSOYLINE TEXT
                                                                SSQY =
           TEXT
                                        .
           TEXT
 SSQYTABL GEN, 4, 4, 4, 20, 32 0, 4, 2, BA(SSQYLINE), 120
 POINTENT RES
 QADHEAD1 TEXT
                     . [
                         QUADRATIC REGRESSION'
                     •
           TEXT
 QDHD1TBL GEN, 4, 4, 4, 20, 32 0, 4, 2, BA(QADHEAD1), 76
 QADHEAD2 TEXT
                              Y=A+BX+CX**2
           TEXT
 QDHD2TBL GEN, 4, 4, 4, 20, 32 0, 4, 2, BA(QADHEAD2), 72
                                     REGNTYPE
 REGRNUSE LI,12 C
           STW, 12 REGNTYPE
```

A CAT DOTTED THE STATE OF THE S STATE OF THE PROPERTY OF THE P

```
FETCH A CARD
                   READTABL
CARDLOOP CAL3,1
         BCS. 15
                                   FOR INTEREAD AND DECLREAD
                   READBUFF
         LI,1
                                   FOR INTEREAD
         LI.2
                                   FOR INTGREAD
         LI,3
         BAL.O
                   INTGREAD
                                   IF VALID NUMBER SYMBOL
         BCR. 2
                   DATARFAD
                                  CARD COLUMN 1
                   READBUFF
         LB,D
                                   FUR NEXT CALCULATION
                   TYPEBUFF
          STB.O
                   REGNTYPE
         LW.12
         CI.12
                   0
                                   IF NOT FIRST RUN
                   REGNHEAD
          BCS, 3
                                   REGNTYPE
TYPESETR LB,12
                   TYPEBUFF
                   REGNTYPE
          STW. 12
                                   END SIGNAL
          CI.12
                   ...
                                   FOR NEXT RUN
          BCS.3
                   PRNTITLE
          CAL4,15
                   REGUSEND
          LW.C
                   REGUSEND
          BCS.1
                   5-1
                                   EXIT
          CAL4.C
                   .
                   79
PRNTITLE LI.1
          LB,0
                   READBUFF.1
                                   LOAD TITLE (NOT COL. 1)
          STB.C
                   USERTITL+2.1
                   $-2
          BDR,1
                                   FETCH TIME AND DATE
          CAL4,10
                   10
                   USERTITL+27
          STW.O
                   USERTITL+28
          STW.1
                    USERTITL+31
          STD. 2
                                   PRINT TITLE, TIME, DATE
                    TITL TABL
          CAL3,1
          BCS. 15
          LI,6
                    POINTONT
          STW. 6
          В
                    CARDLOOP
                                    FOR DECLREAD
 DATAREAD LI.2
                                    FOR DECLREAD
                    79
          LI,3
                    POINTENT
          MTW. 1
                    POINTONT
          LW.O
                    500
          CI.O
                    DECLCALL
          BCR.2
                                    IF TOO MANY DATA
                    CNTERROR
          CAL4,15
                    CNTERROR
          LW.O
          BCS.1
                    5-1
                                   ABORT
          CAL4.0
                                   CONVERT X
                    DECLREAD
 DECLCALL BAL, O
                                   IF INVALID NUMBER
                    NUMERROR
           BCS.7
                    POINTENT
           LW,6
                    INDARRAY-2,6
           STD, 4
                                    CONVERT Y
                    DECLREAD
           BAL . O
                                   IF INVALID NUMBER
                    NUMERROR
           BCS.7
                    POINTONT
           LW.6
                    DEPARRAY-2,6
           STD.4
                                    CONVERT D
                    DECLREAD
           BAL, O
                                   IF INVALID NUMBER
           BCS.7
                    NUMERROR
           CI.4
                    C
                                   IF O
           BCR,3
                    NUMERROR
                    POINTONT
           LW,6
                    DEVARRAY-2,6
           STD,4
                    CARDLOOP
           B
                                  IF INVALID NUMBER
 NUMERROR CAL4,15 FMTERROR
```

S.S. MARRAY SO.

```
LW.O
                   FMTERROR
         BCS,1
                   5-1
         CAL4.0
                                   ABORT
                   .0.
REGNHEAD CI.12
         BCR, 3
                   QUADHEAD
         CAL3.1
                   LNHD1TBL
         BCS, 15
                    $
         CAL3.1
                   LNHD 2TBL
         BCS, 15
                    REGNSETR
          B
QUADHEAD CAL3.1
                    ODHD1TBL
          BCS, 15
          CAL3.1
                    QDHD2TBL
          BCS. 15
REGNSETR CAL3,1
                    HEAD3TBL
          BC S. 15
                    $
          LW-14
                    PUINTENT
          LI,15
                    INDARRAY
          STD. 14
                    REGNTABL
          LI.14
                    DEPARRAY
          LI,15
                    DEVARRAY
                    REGNTABL+2
          STD. 14
          11.1
                    REGNTABL
          LW,12
                    REGNTYPE
                    .0.
          CI,12
          BCR.3
                    QUADCALL
                                    EXECUTE LINEAR REGRESSION
          BAL, O
                    LINAREGN
                    PRINTOUT
          В
                                    EXECUTE QUADRATIC REGRESSION
                    QUADREGN
QUADCALL BAL.O
                                    TO CONVERT AND PRINT
PRINTOUT LI.1
                    REGNTABL
                    BA(SSQYLINE)+97
          LI,2
                    BA(SSQYLINE)+118
          LI,3
                    LFEWRITE
          BAL.O
                    REGNTABL+2
          LI.1
                    BA(CHISLINE)+58
          LI . 2
                    BAICHISLINE)+79
          LI,3
                    LFEWRITE
          BAL. O
          LI,1
                    REGNTABL+4
                    BA(PARALINE)+17
          LI . 2
                    BA(PARALINE)+38
          LI,3
                    LFEWRITE
          BAL.O
                    REGNTABL+6
          LI,1
                    BA(PARALINE)+58
          LI . 2
                    BA (PARALINE)+79
          LI.3
                    LFEWRITE
          BAL.O
                    REGNTABL+8
          LI.1
                    BA(PARALINE)+97
          LI . 2
                    BA(PARALINE)+118
          LI.3
                    LFEWRITE
          BAL. O
                    PARATABL
          CAL3,1
          BCS . 15
                    REGNTABL+10
          LI.1
                    BA(PARBLINE)+17
          LI.2
                    BA(PARBLINE)+38
          LI,3
                    LFEWRITE
          BAL . O
                    REGNTABL+12
          LI,1
           LI,2
                    BA(PARBLINE)+58
          LI,3
                    BA(PARBLINE)+79
           BAL, O
                    LFEWRITE
```



```
REGNTABL+14
         LI,1
                   BA(PARBLINE)+97
         LI,2
                   BA(PARBLINE)+118
         LI.3
                   LFEWRITE
         BAL,0
                   PARBTABL
         CAL3.1
         BCS, 15
                   $
         LW.12
                   REGNTYPE
         CI,12
                   .0.
                   SSOYPRNT
         BCS,3
                   REGNTABL+16
         LI.1
                   BA(PARCLINE)+17
         LI.2
                   BA(PARCLINE)+38
         LI .3
                   LFEWRITE
         BAL . C
                   REGNTABL+18
         LI,1
                   BA(PARCLINE)+58
         LI.2
                   BA(PARCLINE)+79
         LI,3
                   LFEWRITE
         BAL, O
                   REGNTABL+20
         LI.1
                   BA(PARCLINE)+97
         LI,2
                   BA(PARCLINE)+118
         LI,3
         BAL, O
                   LFEWRITE
         CAL3,1
                   PARC TABL
         BCS, 15
                   SSQYTABL
SSOYPRNT CAL3.1
         BCS, 15
         CAL3,1
                   CHISTABL
         BCS, 15
         LW,12
                   REGNTYPE
                    .B.
         CI,12
         BCS, 3
                    TYPE SETR
                    .0.
          LI.12
                    REGNTYPE
          STW, 12
                    QUADHEAD
          В
          END
                    REGRNUSE
```


ACKNOWLEDGMENTS

I am grateful to Paul Day and Arthur Jaffey for their helpful suggestions.

REFERENCES

- 1. Conrad E. Thalmayer, C:READ, A Reentrant Routine to Convert EBCDIC Decimal Numbers to Hexadecimal, ANL-7599 (Aug 1969).
- 2. Conrad E. Thalmayer, C:WRITE, A Reentrant Routine to Convert Hexadecimal Numbers to EBCDIC Decimal, ANL-7634 (Nov 1969).
- 3. Conrad E. Thalmayer, <u>C:REGN</u>, A Reentrant Linear and Quadratic Regression Routine, ANL-7660 (Jan 1970).
- 4. A. Jaffey, unpublished work.

+

